
Survol des éléments les plus utiles **EPFL**

✓ • Théorème central limite (TCM):

- Théorème central limite (TCM): $\leq \times_{\mathcal{V}} \rightarrow \int_{\mathcal{X}} \times_{\mathcal{V}} \rightarrow \int_{\mathcal{X}} \times_{\mathcal{V}} \rightarrow \int_{\mathcal{X}} \times_{\mathcal{V}} \times_{\mathcal{V}} \times_{\mathcal{V}} \times_{\mathcal{V}} \rightarrow \int_{\mathcal{X}} \times_{\mathcal{V}} \times_{\mathcal{V}} \times_{\mathcal{V}} \times_{\mathcal{V}} \rightarrow \int_{\mathcal{V}} \times_{\mathcal{V}} \times_{\mathcal{V}} \times_{\mathcal{V}} \times_{\mathcal{V}} \rightarrow \int_{\mathcal{X}} \times_{\mathcal{V}} \times_{\mathcal{V}$
- PDF (fon. de densité probabilité) de plus utiles associées?

L'espérance:

to { (xi - tox) } Variance:

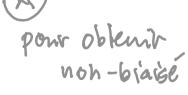
EPFL

Survol des éléments avec les nouveaux symboles

observation		STAT	ME Li	Formule $i=1\mu$	Note
Valeur	Vrais	n	• • "		OTE & -obs.
	Estimé	^	11 /c - moyen	re –	HE R-obs.
La moyenne	Vrais + ewenv		l + Ei	P(X 11, Lo)	
	Estimé + emu	y + ri	Ī + Vi	P(llai-ln)	v-nVerbessestus
Variance	Vrais	E[x]-[E(x)]	6/2 = EEi2		
ž,	Estimé = semple	S = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	92 × V = 5	ri Vi	on $\frac{7}{h}$

M

Ge --- valeur possible de li



EPFL La même variance?

Estimateur vs. estimateur non biaisé

$$V(X) = E\{(X - E\{X\})^2\} = E\{X^2\} - (E\{X\})^2$$

		Function	Estimateur / normalisation
Matlab	Variance	var(x)	non-biaisé (default) / n-1
	Écart-type	std(x)	non-biaisé (default) / n-1
Python	Variance	numpy.var(x)	biaisé (défaut) / n
	Écart-type	numpy.std(x)	biaisé (défaut) / n

EPFL

Example: 3 variables aléatories

$$\ell = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2z \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2x \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2x \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2x \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2x \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2x \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2x \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2x \end{bmatrix}$$

$$K_{\ell} = \begin{bmatrix} 2x \\ 2x \\ 2x$$

M